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A multicomponent reaction (MCR), offering a straightforward —Scheme 1
route to generate complexity and diversity in a single operation, is

an extremely powerful tool in combinatorial chemistry and drug P \:{ Rz = alkyl or any
discovery: However, only a few highly useful MCRs are available =~ = y . Ry
for applications, and rapid advances in this area lead to searches o Re™ "Ry Rs
for new types of target molecules. Amidines could be well-fitted N~ R]/‘-\./'I\I-»R‘ Ry = sulfonyl

for these criteria since they are prominent structural motifs in
numerous bioactive natural produéturthermore, they serve as

important pharmacophores, synthetic intermediates, and efficient 7ab/e 2. Copper-Catalyzed Three-Component Coupling®

coordinating ligand$.Whereas traditional syntheses of amidines o Cul (0.1 equiv) Ei
largely rely on the simple functional group transformation from R= + ReNa v HNRRs —riion R1/\[NI/R Ra
some precursors such as (thio)amitlésp)nitriles® or (ald)oximes) - 2 -
. entry R R, amine yield (%)
only a few reports have adopted one-pot MCR approaches, albeit
with limited scope and generalifyHerein, we describe a new type ! Fh #MeCeH,S0, (-PrNH 8
of three-component synthesisiéfsulfonylamidines and preliminary 2 HERCH 99
mechanistic discussion of the reaction. 8 4-MeCeHy ©
In the context of our studies aimed for the development of — * +PhOCeH, 84
efficient catalytic nitrogen transfénve have focused on the utility 5 2-Pyridyl 66
of sulfonyl azides. Whep-toluenesulfonyl azide and phenylacety- & 3-Pyridyl 92
lene were treated with diisopropylamine, an amidine was unexpect-  * 3-Thienyl 86
edly produced in high yields by the action of copper catalysts & CHy(CHy); 90
(Scheme 1). This result contrasts significantly with the click ° #-Bu e
chemistry!® wherein reactions of alkyl(aryl) azides with alkynes 10 HOCH(CHy), 8
furnish mainly 1,4-triazoles. We assumed that this difference is CICH,(CH,), 91
originated from the entirely dissimilar reactivity between sulfonyl- 12° 1.7-Octadiyne 92
and alkyl(aryl) azides toward Cu-acetylides (vide infra). While no 13 Me;Si 85
reaction took place in the absence of a Cu catalyst, a number of 14 CO,Et 04
Cu sources were tested to reveal that certain species including Cul, 15 1-Cyclohexenyl 9
CuCl, CuBFSMe,, CuOAc, and Cu(acagwere almost equally 16 CHy=CHCH,C(CO,ED),CH, 92
effective in the coupling. Among them, Cul was chosen hereinas 17 Ph 2-CsHyNSO, (i-Pr),NH 59
a catalyst for practical reasons. Although 10 mol % of Cul was 18 MeSO, £y
used, reduced loading of the catalyst was also acceptable to geta 19 4-MeCH S0, PhCH,NH, 68
complete conversion, albeit with a longer time; for example, 30 20 i-PrNH, 75
min with 10 mol % Cul versus 812 h with 1 mol % for>99% 21%f PhNHMe 91
conversion at ambient temperature in THF. Among various solvents O\
examined, THF, 1,4-dioxane, or GEl, turned out to be the best, 22° N7 Coae 70
whereas use of nonpolar solvents such as toluene and hexane CooMe
resulted in more sluggish conversion. 23 mzlm 95
Under the optimized conditions, a wide range of three compo-
nents were successfully coupled to afford the corresporidiagl- 2 A mixture of alkyne (0.5 mmol), azide (0.6 mmol), amine (0.6 mmol),

i [E i and Cul (0.05 mmol) in THF (1.0 mL) was stirred at room temperature for
fonylamidines (Table 1). The structure of amidine was unambigu 1 h (aromatic alkynes)ro2 h (aliphatic acetylenesYisolated yield.

ously conformed by an X-ray crystallographic analysis, which cpjamidine productd 1.0 equiv of azide was use8EtN (1.2—1.5 equiv

discloses ark-form of the generated €N double bond! to alkyne) was addedRun for 6 h.
Electronic variation on aryl acetylenes causes no appreciable
change in the efficiency of the couplings (Table 1, entriegi}l free hydroxyl-, and silyl groups were completely tolerated. In

Heteroaromatic alkynes also served as high-yielding substratesaddition, alkynes directly conjugated with carboxylate or double

(entries 5-7). While reactions of aliphatic alkynes were slightly bond readily participated in the coupling to afford the desired

slower compared to those of aryl acetylenes, the correspondingproducts in excellent yields (entries 14 and 15). As demonstrated
amidines were isolated still in high yields af2h (entries 8-12). in entry 16, the reaction is completely chemoselective so that a
It is noteworthy that a range of functional groups including halo-, double bond was intact under the reaction conditions.
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Scheme 2. Two Plausible Pathways in the Cu-Catalyzed
Three-Component Coupling Reaction

It was revealed that the azide component is not limited only to

R'NH, ®

amidine

R: Cu + N=N—N—Ts

-N;
2=
Cu
\ N
- N2
™~ ———=, amidine

R
N N ®
NS I~
\N/ Ts

tosyl azide, but other types such as pyridine- and methanesulfonyl

azide were also successfully utilized (Table 1, entries 17 and 18).
The scope of the amine components appeared to be extremely broa
and an array of amines including primary, secondary, aliphatic, aryl,
acyclic, and/or cyclic types were all efficiently coupled to furnish
the corresponding amidines (entries—1ZB). Amino esters were
likewise incorporated with almost the same efficiency (entries 22
and 23).

Interestingly, reaction with an optically active amino ester was
performed without racemization (eq 1). Moreover, it could be
readily scaled up (10.0 mmol of alkyne) with the same efficiency
(2 mol % of Cul, 97%, 4.4 g). It should be mentioned that the
reaction proceeded smoothly even in an aqueous cosolvent syste
(THF/H,O = 4/1). These results render further weight on our
reaction and broaden its application to chiral compounds.

o
+ TsN3 + Ph/\)J\OMe

NH, / HCI
(1.05 eq)
0.50 mmol (0.1 eq Cul, 1 h, THF) 95% (>99% ee)
10.0 mmol (0.01eq Cul, 12h, THF)  97% (4.38 9)
0.50 mmol (0.1 eq Cul, 1 h, THF/H 20 = 4/1) 96% (>99% ee)

Et3N (1.5 equiv)
e BachASh LY Q)

solvent, 25 °C

(1.2 eq)

Reaction of phenylacetylergtoffered the desired amidine with
d-incorporation at the benzylic position (eq 2), and a cross
scrambling of deuterium was observed in a reaction employing two

arylacetylene substrates (eq 3), suggesting that acetylenic proton

does not migrate in a putative “closed” intramolecular maner.

NTs
TsN3, Cul
HN(i-Pr)5, THF
88%

Ph

N(i-Pr)2 (37% d-incorporation)

NTs NTs

%N(i-Pr)z + ph\HkN(i-Pr)2 ®
D

D
(22% d-incorporation)

conditions
_
80%

— J— Ar.

Ar + Ph

(Ar = 4-CF3CgHy)
(18% d-incorporation)

Because an immediate color change to yellow was observed upon

addition of Cu-catalyst to the reaction mixture containing terminal
alkynes, formation of Cu-acetylide is obviously regarded to take
place in the first step. Although other possibilities still remain to
envision!3 a subsequent coupling reaction of Cu-acetylide with

sulfonyl azide and amine may be assumed to proceed through one

of the following intermediates (Scheme 2). The first putative
intermediate would be a ketenimine species which is formed by a
nucleophilic attack of Cu-acetylide to azide nitrogen followed by

intermediate is required in that the reaction also proceeds efficiently
even in an aqueous system.

The second possible pathway (B) includes a triazole intermediate
similar to the case of click chemistry. Recent DFT calculation has
revealed that the stepwise formation of the Cu-triazole species is
initiated by the attack of the proximal nitrogen to alkyl(aryl) group
on Cu-acetylidé> More importantly, triazoles with an electron-
withdrawing group such as tosyl at N1 are known to undergo the
Dimroth rearrangemeftt via a-diazoimine species which can
readily react with an amine leading to amidine moitilowever,
when sulfonyl azide was allowed to react in the presence of

iisopropylamine under the Sharple$=okin conditions'® no
Yiazole was observed in our experiments. Independent preparation
of and subjecting both 1,4- and 1,5-triazdfes the reaction system
resulted in no changes of the heterocycles even after prolonged
time presumably because the isolated triazoles are fairly stable under
the employed conditions.

In conclusion, we have developed a highly efficient, mild,
practical, and catalytic method for the synthesisNa$ulfonyl-
amidines. This MCR has an extremely broad scope with all three
coupling components of alkyne, sulfonyl azide, and amine. Further
mechanistic details and applications, especially for the combinatorial

nE)urposes, are now under investigation.
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